Dynamic Anomaly Detection With High-Fidelity Simulators: A Convex Optimization Approach

نویسندگان

چکیده

The main objective of this article is to develop scalable dynamic anomaly detectors with high-fidelity simulators power systems. On the one hand, models in are typically “intractable” if opts describe them a mathematical formulation order apply existing model-based approaches from detection literature. other pure data-driven methods developed primarily machine learning literature neglect our knowledge about underlying dynamics In study, we combine tools these two mainstream data-assisted diagnosis filter utilizing both picked abstract model and also data simulation results simulators. proposed aims achieve desired features: (i) performance robustness respect mismatch; (ii) high scalability. To end, propose tractable (convex) optimization-based reformulation which decisions parameters, information introduces feasible sets, simulator forms function to-be-minimized regarding effect mismatch on performance. validate theoretical results, implement DIgSILENT PowerFactory detect false injection attacks Automatic Generation Control measurements three-area IEEE 39-bus system.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint

In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...

متن کامل

Evolutionary Optimization with Dynamic Fidelity Computational Models

In this paper, we propose an evolutionary framework for model fidelity control that decides, at runtime, the appropriate fidelity level of the computational model, which is deemed to be computationally less expensive, to be used in place of the exact analysis code as the search progresses. Empirical study on an aerodynamic airfoil design problem based on a Memetic Algorithm with Dynamic Fidelit...

متن کامل

A Dynamic Approach for Anomaly Detection in AODV

Mobile ad hoc networks (MANETs) are relatively vulnerable to malicious network attacks, and therefore, security is a more significant issue than infrastructure-based wire-less networks. In MANETs, it is difficult to identify malicious hosts as the topology of the network dynamically changes. A malicious host can easily interrupt a route for which it is one of the forming nodes in the communicat...

متن کامل

A Novel Approach for Anomaly Detection over High-Speed Networks

This paper provides a new framework for efficient detection and identification of network anomalies over high speed links, in early stage of its occurrence to quickly react by taking the appropriate countermeasures. The proposed framework is based on change point detection in counters value of reversible sketch, which aggregates multiple data streams from high speed links in a stretched databas...

متن کامل

A Quasi-Newton Approach to Nonsmooth Convex Optimization A Quasi-Newton Approach to Nonsmooth Convex Optimization

We extend the well-known BFGS quasi-Newton method and its limited-memory variant (LBFGS) to the optimization of nonsmooth convex objectives. This is done in a rigorous fashion by generalizing three components of BFGS to subdifferentials: The local quadratic model, the identification of a descent direction, and the Wolfe line search conditions. We apply the resulting subLBFGS algorithm to L2-reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Smart Grid

سال: 2022

ISSN: ['1949-3053', '1949-3061']

DOI: https://doi.org/10.1109/tsg.2021.3129074